Graybeard
Well-Known Member
A: I have no real info
Regardless of the real source -- this is what you could do with this data
this is the top 10% 40 of 400 (that is suspicious in itself -- even 100 number? LOL)
My guess it that it is a fictional baby goods store or a toy store and
>>2,Male,21,15,81 <<<he just got his first credit card and was helping his older sister out
the data:
echo 'CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)'
&& sed '1,40!d' mall_customers.csv
_______________________________________________________________
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
================================================
12,Female,35,19,99
20,Female,35,23,98
146,Male,28,77,97
186,Male,30,99,97
128,Male,40,71,95
168,Female,33,86,95
8,Female,23,18,94
142,Male,32,75,93
164,Female,31,81,93
34,Male,18,33,92
42,Male,24,38,92
174,Male,36,87,92
124,Male,39,69,91
194,Female,38,113,91
150,Male,34,78,90
180,Male,35,93,90
156,Female,27,78,89
136,Female,29,73,88
152,Male,39,78,88
184,Female,29,98,88
30,Female,23,29,87
144,Female,32,76,87
176,Female,30,88,86
182,Female,32,97,86
190,Female,36,103,85
162,Female,29,79,83
200,Male,30,137,83
26,Male,29,28,82
2,Male,21,15,81
36,Female,21,33,81
16,Male,22,20,79
196,Female,35,120,79
158,Female,30,78,78
4,Female,23,16,77
14,Female,24,20,77
126,Female,31,70,77
6,Female,22,17,76
154,Female,38,78,76
40,Female,20,37,75
130,Male,38,71,75
^above sorted by spending score
sed '1,40!d' mall_customers.csv|sort -t',' -k3
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
34,Male,18,33,92
40,Female,20,37,75
2,Male,21,15,81
36,Female,21,33,81
6,Female,22,17,76
16,Male,22,20,79
4,Female,23,16,77
8,Female,23,18,94
30,Female,23,29,87
14,Female,24,20,77
42,Male,24,38,92
156,Female,27,78,89
146,Male,28,77,97
26,Male,29,28,82
136,Female,29,73,88
162,Female,29,79,83
184,Female,29,98,88
200,Male,30,137,83
158,Female,30,78,78
176,Female,30,88,86
186,Male,30,99,97
126,Female,31,70,77
164,Female,31,81,93
142,Male,32,75,93
144,Female,32,76,87
182,Female,32,97,86
168,Female,33,86,95
150,Male,34,78,90
196,Female,35,120,79
12,Female,35,19,99
20,Female,35,23,98
180,Male,35,93,90
190,Female,36,103,85
174,Male,36,87,92
194,Female,38,113,91
130,Male,38,71,75
154,Female,38,78,76
124,Male,39,69,91
152,Male,39,78,88
128,Male,40,71,95
^same sample but sorted by age (k3[column 3])
sed '1,40!d' mall_customers.csv|sort -nr -t',' -k4
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
200,Male,30,137,83
196,Female,35,120,79
194,Female,38,113,91
190,Female,36,103,85
186,Male,30,99,97
184,Female,29,98,88
182,Female,32,97,86
180,Male,35,93,90
176,Female,30,88,86
174,Male,36,87,92
168,Female,33,86,95
164,Female,31,81,93
162,Female,29,79,83
150,Male,34,78,90
156,Female,27,78,89
152,Male,39,78,88
158,Female,30,78,78
154,Female,38,78,76
146,Male,28,77,97
144,Female,32,76,87
142,Male,32,75,93
136,Female,29,73,88
128,Male,40,71,95
130,Male,38,71,75
126,Female,31,70,77
124,Male,39,69,91
42,Male,24,38,92
40,Female,20,37,75
34,Male,18,33,92
36,Female,21,33,81
30,Female,23,29,87
26,Male,29,28,82
20,Female,35,23,98
16,Male,22,20,79
14,Female,24,20,77
12,Female,35,19,99
8,Female,23,18,94
6,Female,22,17,76
4,Female,23,16,77
2,Male,21,15,81
^same segment sorted by income -nr (DESC or -nr [numbers reversed])
- I came across this database for download -- what is it really about?
- Did it come from one of those customer surveys that the cashier promotes with a prize give-a-way? IDK ...
- Did some college kid upload his homework for his big data class 101 and invent this data for testing purposes <= could be!
Regardless of the real source -- this is what you could do with this data
this is the top 10% 40 of 400 (that is suspicious in itself -- even 100 number? LOL)
My guess it that it is a fictional baby goods store or a toy store and
>>2,Male,21,15,81 <<<he just got his first credit card and was helping his older sister out
the data:
echo 'CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)'
&& sed '1,40!d' mall_customers.csv
_______________________________________________________________
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
================================================
12,Female,35,19,99
20,Female,35,23,98
146,Male,28,77,97
186,Male,30,99,97
128,Male,40,71,95
168,Female,33,86,95
8,Female,23,18,94
142,Male,32,75,93
164,Female,31,81,93
34,Male,18,33,92
42,Male,24,38,92
174,Male,36,87,92
124,Male,39,69,91
194,Female,38,113,91
150,Male,34,78,90
180,Male,35,93,90
156,Female,27,78,89
136,Female,29,73,88
152,Male,39,78,88
184,Female,29,98,88
30,Female,23,29,87
144,Female,32,76,87
176,Female,30,88,86
182,Female,32,97,86
190,Female,36,103,85
162,Female,29,79,83
200,Male,30,137,83
26,Male,29,28,82
2,Male,21,15,81
36,Female,21,33,81
16,Male,22,20,79
196,Female,35,120,79
158,Female,30,78,78
4,Female,23,16,77
14,Female,24,20,77
126,Female,31,70,77
6,Female,22,17,76
154,Female,38,78,76
40,Female,20,37,75
130,Male,38,71,75
^above sorted by spending score
sed '1,40!d' mall_customers.csv|sort -t',' -k3
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
34,Male,18,33,92
40,Female,20,37,75
2,Male,21,15,81
36,Female,21,33,81
6,Female,22,17,76
16,Male,22,20,79
4,Female,23,16,77
8,Female,23,18,94
30,Female,23,29,87
14,Female,24,20,77
42,Male,24,38,92
156,Female,27,78,89
146,Male,28,77,97
26,Male,29,28,82
136,Female,29,73,88
162,Female,29,79,83
184,Female,29,98,88
200,Male,30,137,83
158,Female,30,78,78
176,Female,30,88,86
186,Male,30,99,97
126,Female,31,70,77
164,Female,31,81,93
142,Male,32,75,93
144,Female,32,76,87
182,Female,32,97,86
168,Female,33,86,95
150,Male,34,78,90
196,Female,35,120,79
12,Female,35,19,99
20,Female,35,23,98
180,Male,35,93,90
190,Female,36,103,85
174,Male,36,87,92
194,Female,38,113,91
130,Male,38,71,75
154,Female,38,78,76
124,Male,39,69,91
152,Male,39,78,88
128,Male,40,71,95
^same sample but sorted by age (k3[column 3])
sed '1,40!d' mall_customers.csv|sort -nr -t',' -k4
CustomerID|Gender|Age|Annual Income (k$)|Spending Score (1-100)
200,Male,30,137,83
196,Female,35,120,79
194,Female,38,113,91
190,Female,36,103,85
186,Male,30,99,97
184,Female,29,98,88
182,Female,32,97,86
180,Male,35,93,90
176,Female,30,88,86
174,Male,36,87,92
168,Female,33,86,95
164,Female,31,81,93
162,Female,29,79,83
150,Male,34,78,90
156,Female,27,78,89
152,Male,39,78,88
158,Female,30,78,78
154,Female,38,78,76
146,Male,28,77,97
144,Female,32,76,87
142,Male,32,75,93
136,Female,29,73,88
128,Male,40,71,95
130,Male,38,71,75
126,Female,31,70,77
124,Male,39,69,91
42,Male,24,38,92
40,Female,20,37,75
34,Male,18,33,92
36,Female,21,33,81
30,Female,23,29,87
26,Male,29,28,82
20,Female,35,23,98
16,Male,22,20,79
14,Female,24,20,77
12,Female,35,19,99
8,Female,23,18,94
6,Female,22,17,76
4,Female,23,16,77
2,Male,21,15,81
^same segment sorted by income -nr (DESC or -nr [numbers reversed])